3.2989 \(\int \frac {1}{\sqrt {a+b \sqrt {\frac {c}{x}}}} \, dx\)

Optimal. Leaf size=95 \[ \frac {3 b^2 c \tanh ^{-1}\left (\frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{\sqrt {a}}\right )}{2 a^{5/2}}-\frac {3 b c \sqrt {a+b \sqrt {\frac {c}{x}}}}{2 a^2 \sqrt {\frac {c}{x}}}+\frac {x \sqrt {a+b \sqrt {\frac {c}{x}}}}{a} \]

[Out]

3/2*b^2*c*arctanh((a+b*(c/x)^(1/2))^(1/2)/a^(1/2))/a^(5/2)+x*(a+b*(c/x)^(1/2))^(1/2)/a-3/2*b*c*(a+b*(c/x)^(1/2
))^(1/2)/a^2/(c/x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {255, 190, 51, 63, 208} \[ \frac {3 b^2 c \tanh ^{-1}\left (\frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{\sqrt {a}}\right )}{2 a^{5/2}}-\frac {3 b c \sqrt {a+b \sqrt {\frac {c}{x}}}}{2 a^2 \sqrt {\frac {c}{x}}}+\frac {x \sqrt {a+b \sqrt {\frac {c}{x}}}}{a} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b*Sqrt[c/x]],x]

[Out]

(-3*b*c*Sqrt[a + b*Sqrt[c/x]])/(2*a^2*Sqrt[c/x]) + (Sqrt[a + b*Sqrt[c/x]]*x)/a + (3*b^2*c*ArcTanh[Sqrt[a + b*S
qrt[c/x]]/Sqrt[a]])/(2*a^(5/2))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 190

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(1/n - 1)*(a + b*x)^p, x], x, x^n], x] /
; FreeQ[{a, b, p}, x] && FractionQ[n] && IntegerQ[1/n]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 255

Int[((a_) + (b_.)*((c_.)*(x_)^(q_.))^(n_))^(p_.), x_Symbol] :> With[{k = Denominator[n]}, Subst[Int[(a + b*c^n
*x^(n*q))^p, x], x^(1/k), (c*x^q)^(1/k)/(c^(1/k)*(x^(1/k))^(q - 1))]] /; FreeQ[{a, b, c, p, q}, x] && Fraction
Q[n]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b \sqrt {\frac {c}{x}}}} \, dx &=\operatorname {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b \sqrt {c}}{\sqrt {x}}}} \, dx,\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=-\operatorname {Subst}\left (2 \operatorname {Subst}\left (\int \frac {1}{x^3 \sqrt {a+b \sqrt {c} x}} \, dx,x,\frac {1}{\sqrt {x}}\right ),\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=\frac {\sqrt {a+b \sqrt {\frac {c}{x}}} x}{a}+\operatorname {Subst}\left (\frac {\left (3 b \sqrt {c}\right ) \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {a+b \sqrt {c} x}} \, dx,x,\frac {1}{\sqrt {x}}\right )}{2 a},\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=-\frac {3 b c \sqrt {a+b \sqrt {\frac {c}{x}}}}{2 a^2 \sqrt {\frac {c}{x}}}+\frac {\sqrt {a+b \sqrt {\frac {c}{x}}} x}{a}-\operatorname {Subst}\left (\frac {\left (3 b^2 c\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b \sqrt {c} x}} \, dx,x,\frac {1}{\sqrt {x}}\right )}{4 a^2},\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=-\frac {3 b c \sqrt {a+b \sqrt {\frac {c}{x}}}}{2 a^2 \sqrt {\frac {c}{x}}}+\frac {\sqrt {a+b \sqrt {\frac {c}{x}}} x}{a}-\operatorname {Subst}\left (\frac {\left (3 b \sqrt {c}\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b \sqrt {c}}+\frac {x^2}{b \sqrt {c}}} \, dx,x,\sqrt {a+\frac {b \sqrt {c}}{\sqrt {x}}}\right )}{2 a^2},\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=-\frac {3 b c \sqrt {a+b \sqrt {\frac {c}{x}}}}{2 a^2 \sqrt {\frac {c}{x}}}+\frac {\sqrt {a+b \sqrt {\frac {c}{x}}} x}{a}+\frac {3 b^2 c \tanh ^{-1}\left (\frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{\sqrt {a}}\right )}{2 a^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 89, normalized size = 0.94 \[ \frac {3 b^2 c \tanh ^{-1}\left (\frac {\sqrt {a}}{\sqrt {a+b \sqrt {\frac {c}{x}}}}\right )}{2 a^{5/2}}+\frac {2 a^2 x-a b x \sqrt {\frac {c}{x}}-3 b^2 c}{2 a^2 \sqrt {a+b \sqrt {\frac {c}{x}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b*Sqrt[c/x]],x]

[Out]

(-3*b^2*c + 2*a^2*x - a*b*Sqrt[c/x]*x)/(2*a^2*Sqrt[a + b*Sqrt[c/x]]) + (3*b^2*c*ArcTanh[Sqrt[a]/Sqrt[a + b*Sqr
t[c/x]]])/(2*a^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.97, size = 165, normalized size = 1.74 \[ \left [\frac {3 \, \sqrt {a} b^{2} c \log \left (2 \, \sqrt {b \sqrt {\frac {c}{x}} + a} \sqrt {a} x \sqrt {\frac {c}{x}} + 2 \, a x \sqrt {\frac {c}{x}} + b c\right ) - 2 \, {\left (3 \, a b x \sqrt {\frac {c}{x}} - 2 \, a^{2} x\right )} \sqrt {b \sqrt {\frac {c}{x}} + a}}{4 \, a^{3}}, -\frac {3 \, \sqrt {-a} b^{2} c \arctan \left (\frac {\sqrt {b \sqrt {\frac {c}{x}} + a} \sqrt {-a}}{a}\right ) + {\left (3 \, a b x \sqrt {\frac {c}{x}} - 2 \, a^{2} x\right )} \sqrt {b \sqrt {\frac {c}{x}} + a}}{2 \, a^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c/x)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(3*sqrt(a)*b^2*c*log(2*sqrt(b*sqrt(c/x) + a)*sqrt(a)*x*sqrt(c/x) + 2*a*x*sqrt(c/x) + b*c) - 2*(3*a*b*x*sq
rt(c/x) - 2*a^2*x)*sqrt(b*sqrt(c/x) + a))/a^3, -1/2*(3*sqrt(-a)*b^2*c*arctan(sqrt(b*sqrt(c/x) + a)*sqrt(-a)/a)
 + (3*a*b*x*sqrt(c/x) - 2*a^2*x)*sqrt(b*sqrt(c/x) + a))/a^3]

________________________________________________________________________________________

giac [A]  time = 0.41, size = 139, normalized size = 1.46 \[ \frac {\frac {3 \, b^{2} c^{2} \log \left (c^{2} {\left | b \right |}\right )}{\sqrt {a c} a^{2}} - \frac {3 \, b^{2} c^{2} \log \left ({\left | -b c^{2} - 2 \, \sqrt {a c} {\left (\sqrt {a c} \sqrt {c x} - \sqrt {a c^{2} x + \sqrt {c x} b c^{2}}\right )} \right |}\right )}{\sqrt {a c} a^{2}} - 2 \, \sqrt {a c^{2} x + \sqrt {c x} b c^{2}} {\left (\frac {3 \, b}{a^{2}} - \frac {2 \, \sqrt {c x}}{a c}\right )}}{4 \, \sqrt {c} \mathrm {sgn}\relax (x)} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c/x)^(1/2))^(1/2),x, algorithm="giac")

[Out]

1/4*(3*b^2*c^2*log(c^2*abs(b))/(sqrt(a*c)*a^2) - 3*b^2*c^2*log(abs(-b*c^2 - 2*sqrt(a*c)*(sqrt(a*c)*sqrt(c*x) -
 sqrt(a*c^2*x + sqrt(c*x)*b*c^2))))/(sqrt(a*c)*a^2) - 2*sqrt(a*c^2*x + sqrt(c*x)*b*c^2)*(3*b/a^2 - 2*sqrt(c*x)
/(a*c)))/(sqrt(c)*sgn(x))

________________________________________________________________________________________

maple [B]  time = 0.04, size = 229, normalized size = 2.41 \[ -\frac {\sqrt {a +\sqrt {\frac {c}{x}}\, b}\, \left (-4 a \,b^{2} c \ln \left (\frac {2 a \sqrt {x}+\sqrt {\frac {c}{x}}\, b \sqrt {x}+2 \sqrt {\left (a +\sqrt {\frac {c}{x}}\, b \right ) x}\, \sqrt {a}}{2 \sqrt {a}}\right )+a \,b^{2} c \ln \left (\frac {2 a \sqrt {x}+\sqrt {\frac {c}{x}}\, b \sqrt {x}+2 \sqrt {a x +\sqrt {\frac {c}{x}}\, b x}\, \sqrt {a}}{2 \sqrt {a}}\right )-4 \sqrt {a x +\sqrt {\frac {c}{x}}\, b x}\, a^{\frac {5}{2}} \sqrt {x}+8 \sqrt {\left (a +\sqrt {\frac {c}{x}}\, b \right ) x}\, \sqrt {\frac {c}{x}}\, a^{\frac {3}{2}} b \sqrt {x}-2 \sqrt {a x +\sqrt {\frac {c}{x}}\, b x}\, \sqrt {\frac {c}{x}}\, a^{\frac {3}{2}} b \sqrt {x}\right ) \sqrt {x}}{4 \sqrt {\left (a +\sqrt {\frac {c}{x}}\, b \right ) x}\, a^{\frac {7}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+(c/x)^(1/2)*b)^(1/2),x)

[Out]

-1/4*(a+(c/x)^(1/2)*b)^(1/2)*x^(1/2)*(8*((a+(c/x)^(1/2)*b)*x)^(1/2)*a^(3/2)*(c/x)^(1/2)*x^(1/2)*b-4*(a*x+(c/x)
^(1/2)*b*x)^(1/2)*a^(5/2)*x^(1/2)-2*(a*x+(c/x)^(1/2)*b*x)^(1/2)*(c/x)^(1/2)*a^(3/2)*b*x^(1/2)-4*c*a*ln(1/2*(2*
a*x^(1/2)+(c/x)^(1/2)*b*x^(1/2)+2*((a+(c/x)^(1/2)*b)*x)^(1/2)*a^(1/2))/a^(1/2))*b^2+a*b^2*c*ln(1/2*(2*a*x^(1/2
)+(c/x)^(1/2)*b*x^(1/2)+2*(a*x+(c/x)^(1/2)*b*x)^(1/2)*a^(1/2))/a^(1/2)))/((a+(c/x)^(1/2)*b)*x)^(1/2)/a^(7/2)

________________________________________________________________________________________

maxima [A]  time = 1.16, size = 131, normalized size = 1.38 \[ -\frac {1}{4} \, c {\left (\frac {3 \, b^{2} \log \left (\frac {\sqrt {b \sqrt {\frac {c}{x}} + a} - \sqrt {a}}{\sqrt {b \sqrt {\frac {c}{x}} + a} + \sqrt {a}}\right )}{a^{\frac {5}{2}}} + \frac {2 \, {\left (3 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {3}{2}} b^{2} - 5 \, \sqrt {b \sqrt {\frac {c}{x}} + a} a b^{2}\right )}}{{\left (b \sqrt {\frac {c}{x}} + a\right )}^{2} a^{2} - 2 \, {\left (b \sqrt {\frac {c}{x}} + a\right )} a^{3} + a^{4}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c/x)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

-1/4*c*(3*b^2*log((sqrt(b*sqrt(c/x) + a) - sqrt(a))/(sqrt(b*sqrt(c/x) + a) + sqrt(a)))/a^(5/2) + 2*(3*(b*sqrt(
c/x) + a)^(3/2)*b^2 - 5*sqrt(b*sqrt(c/x) + a)*a*b^2)/((b*sqrt(c/x) + a)^2*a^2 - 2*(b*sqrt(c/x) + a)*a^3 + a^4)
)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {a+b\,\sqrt {\frac {c}{x}}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*(c/x)^(1/2))^(1/2),x)

[Out]

int(1/(a + b*(c/x)^(1/2))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + b \sqrt {\frac {c}{x}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c/x)**(1/2))**(1/2),x)

[Out]

Integral(1/sqrt(a + b*sqrt(c/x)), x)

________________________________________________________________________________________